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LETTER TO THE EDITOR 

Electron-electron scattering in narrow Si accumulation 
layers 

D M Pooket+, N Paquint§, M Pepper? and A Gundlachll 
t Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 
11 Edinburgh Microfabrication Facility, King’s Building, Edinburgh EM9 3JL, UK 

Received 10 February 1989 

Abstract. We report on measurements of the phase coherence time, tp ,  as determined from 
the measurement of weak negative magnetoresistance in narrow pinched Si accumulation 
layers. Under favourable bias conditions, one-dimensional quantum interference and elec- 
tron interaction corrections to the conductivity are found. The phase coherence length is 
then best described in terms of the ID Nyquist phase-breaking mechanism, with a Landau- 
Baber (pure metal limit) component which retains its 2D form. 

There is substantial interest in the nature of quantum transport in disordered systems of 
low dimensions, encouraged in part by improved techniques for fabricating the fine scale 
structures. Recent experimental work includes studies on fine wires [ l ,  21, narrow metal 
films [ 3 ] ,  narrow Si metal-oxide-semiconductor field-effect transistors (MOSFETS) [4-61 
and GaAs/AlGaAs heterostructures [7,8]. In this Letter we report on measurements 
of the quantum interference (weak localisation) correction to the conductivity, extending 
to the quasi-one-dimensional regime, in narrow Si pinched accumulation layer MOSFETS. 

The dimensionality of a sample with respect to the quantum interference effect is 
governed by the magnitude of the phase coherence length, L,, relative to the sample 
dimensions. For the Si MOSFET the correction will take its one dimensional form if 
L,  > W ,  where W is the channel width (with it assumed that the channel length, L ,  
satisfies L + L,). Application of a magnetic field B transverse to the plane of the channel 
quenches the quantum interference giving a weak positive magnetoconductance; in one 
dimension (ID) the theoretical relation is [9] 

Ag(B) = (e2/nhL){L, - [ ( l / L ; )  + (e2W2B2/3h2)]-1/2}. ( 1 )  

This assumes negligible boundary scattering (W S=- 1, where 1 is the elastic scattering 
length), and is valid only for LH > W ,  where LH is the magnetic length defined by LH = 
(h/2eB)lI2. Significant decrease of L,  or LH below W results in 2~ behaviour for which 
the theoretical relations are well established [lo].  

Contributions to the magnetoconductance arising from the electron interaction 
correction are expected to be negligible in the weak localisation regime [ll], hence the 
value of L,  may be obtained by fitting the theoretical relation ( 1 )  to the experimentally 
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observed low field magnetoconductance. L ,  is related to the phase coherence time z, 
through the relation L,  = (Dz,)'12 where D is the diffusion constant. 

At low temperatures the dominant phase breaking mechanism is electron-electron 
scattering; this has been the subject of much theoretical and experimeDtal study [11]. In 
the pure metal limit (no disorder) the electron-electron scattering time tee is described 
by the Landau-Baber result and in 2D is given by [12] 

(z ", ) = ( l / n .  ) ( x/2)F2 ( k2 T2 /hE,) In( 1/6) (2) 
where 6 is the cut-off parameter, max[h/zEF, kT/E,], E F  is the Fermi energy and F is 
the screening factor. The dimensionality here relates to that of the effective density of 
states; for a ID density of states (DOS) the term is linear in T.  

In the presence of disorder the scattering rate is enhanced, with a contribution 
( t ie) - '  having a temperature dependence going as [12] Td/4  and hence which dominates 
(t&-' as T+ 0. The dimensionality d of this term is determined by the thermal length 
L, in the same manner that L,  determines that of the quantum interference correction. 
The total scattering rate is the sum of two components, (t,,)-' = ( T : ~ ) - '  + (tLe)-*, L1 
is given by (hD/kT)'1*. 

In the current understanding of the phase breaking mechanism [13,14] it is stressed 
that the tg, appearing in the weak localisation correction is not, in fact, the lifetime xee ,  
but rather the lifetime of the two-particle correlation function which describes quantum 
interference. z, and re, coincide where electron collisions involving large energy transfer 
dominate the phase breaking process, but for d G 2 an important contribution comes 
from small energy transfer (quasi-elastic) processes equivalent to a Nyquist rate [ 13, 151, 
(tN)-'. In the regime kTz, + A ,  (zN)-l is expected to dominate (z;,)-' so that t, = zN. 

( t i e ) - *  -- T-'/*. Specifically, in ID zN is given by the theoretical relation [13] 
In 2D ( tN) - l ,  like ( t t e ) - l ,  is linear in T. In ID,  though, (zN)-l = T-*I3, while 

In I D ,  then, the different phase-breaking mechanisms may be distinguished by examining 
the temperature dependence of the r ,  extracted from magnetoresistance experiments. 

The devices used in the experiments are polysilicon-gated, pinched accumulation 
layer Si(100) MOSFETS which have been described elsewhere [16]. The application of a 
reverse voltage bias, Vp, to p+ implants along the 100 pm length of channel reduces the 
width of the electron layer. The width under various gate (V,) and p+ biases can be 
determined from magnetoresistance measurements in the 2D regime [17]; these are listed 
in table 1 with other transport parameters. 

Table 1. Relevant transport parameters at various gate, V,, and control junction, V,, biases. 

V, (VI 60 60 75 
V, (VI 0 -3 -6 

g,(10-6 W l )  8.2 4.6 3.6 
L I ( ~ O - ~  m 2  s-l) 7.2 6.7 7.1 
n(1016 m-*) 2.1 1.85 2.1 

1 pm) 9.4 9.4 10.0 
W(um) at T = 4.2 K 0.44 0.26 0.20 

kF 1 24 22 23 
y(m2 V I S - ' )  0.57 0.57 0.54 
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Figure 1. (z,T)-' plotted against T for the 2~ 
regime (Vg = 60 V, V, = 0 V). The full line is the 
best linear fit to the data. 

Figure 2. Weak localisation magnetoconductance 
at the temperatures indicated (V, = 60 V, V, = 
0 V). The full curves are fits of the ID magneto- 
conductance expression (1) to the data: A ,  T = 
0.14 K;  23, T = 0.41 K;  C, T = 0.72 K.  

The low temperature ( T  < 1 K) magnetoresistance measurements were collected 
using a computer-controlled data acquisition system, allowing data averaging to improve 
signal-to-noise levels. Care was taken to ensure that negligible electron heating resulted 
from this arrangement. 

For T much beyond 1 K the device, with biases Vg = 60 V and Vp = 0 V, is in the 2D 
localisation regime ( L ,  < W ,  with the magnetoresistance fitting the 2D expression [lo]). 
Figure 1 displays the quantity (z,T)-' for 3 < T < 10 K. The linear fit shows z, is 
described by the relation (z,)-l = A(T/K) + B(T/K)2, as can be expected in 2D [18]. 
HereA = (3.5 2 3.4) x lo9 s-l and B = (9.72 f 0.05) x lo9 s-l. 

At lower temperatures the device enters the ID regime, L ,  > W. The mag- 
netoresistance for T < 1 K is well fitted (figure 2) by ( l ) ,  while the 2D expression could 
not be used with realistic parameters. The resulting values of L ,  are shown in figure 3. 
The best single power-law fit to the data, excluding points below 150 mK (which will be 
discussed later) gives L,  = (0.41 e 0.01) pm (T/K)-0.39'0.03, in good agreement with 
the theoretical prediction for the ID Nyquist mechanism of LN = 0.51 pm (T/K)-'I3. 

The discrepancy in the power of temperature does however require further con- 
sideration. From the data we see that LT > Wonly for T < 0.3 K so above 0.3 K the 2D 
limit of electron-electron scattering could be expected, giving L,  - T-1/2. This would 
demonstrate how a sample may be ID with respect to quantum interference, L ,  > W ,  
and yet with L,< W still have the magnitude and temperature dependence of L ,  
governed by the 2~ equations. If this were the case the temperature coefficient for the 
2D term z, - T-l (i.e. , L, = T-1/2) should match that found for T > 3 K,  A = 3.5 X lo9 
s-l from above. In fitting L ,  to T-l12 for 0.4 K < T < 1 K (as shown in figure 3) a 
temperature prefactor of 0.39 k 0.006 pm is obtained. But, using D from table 1, this 
equates to (z,)-l = (4.7 * 0.2) x 10'O s-l, in poor agreement with the value A .  This is 
only marginally improved if the pure metal limit term ( L J 2  = T2, with coefficient B ,  
is also included in fitting the 0.4 < T < 1 K data. However for the points below 0.4 K we 
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Figure 3. The T dependence of the phase-coher- 
ence length for the three sets of bias conditions; 
(a )  V , = 6 0 V ,  V p = O V ;  ( b )  V g = 6 0 V ,  V p =  
-3 V; (c) V, = 75 V, V, = -6 V. The solid lines 
are the best fits for a single power of temperature, 
excluding points below 150 mK, giving (A) L,  = 
T o  39 and (B) L ,  = T-" 3 4 .  The dashed line is the 
best fit to the data for T >  0.4 K. The data 
for (C) falls below the T-"3 1DNyquist prediction. 
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Figure 4. The inverse square of the phase coher- 
ence length plotted against temperature (V,  = 
60 V, Vp = 0 V). The solid line is the best fit to a 
combination of T2and TZ"terms ( X 7 ' / 3  + Y T 2 ) ,  
corresponding to contributions from both the ZD 
Landau-Baber and ID Nyquist phase-breaking 
mechanisms. 

find L, = (0.45 k 0.01) pm ( T/K)-0.3"0.02 which agrees with the Nyquist prediction, 
though the data range is very limited. 

A more satisfactory explanation for the discrepancy in the power of temperature 
(T-' 39 versus T- ' /3)  is that the ID Nyquist mechanism operates throughout the tem- 
perature range to T = 1 K (the dimensionality condition Lj- > W is approximate, with 
;zLT > W often being used), together with a contribution from the 2~ Landau-Baber 
term ( 2 ~  because the DOS remains two-dimensional). In this case the data should fit the 
form (L,)-2 = X ( T / K ) 2 / 3  + Y(T/K) ' ,  in the same fashion as for 2D systems [18]. This fit 
is shown in figure 4, yielding X = (4.7 k 0.1) x 10l2 m-' or X-1/2 = (0.46 k 0.005) pm, 
in good agreement with the Nyquist prediction. In this explanation the value of (YD) 
should match B,  the T 2  coefficient of (z,)-' from the 2D regime. From figure 4 and table 
1, Y D  = (1.1 L 0.1) x 10" s-', in excellent accord with B. In addition, zK < r:e which 
is required to allow for such a linear combination [ 131. 

It could be argued that the data represents a linear combination of T 2  ( ( T : ~ ) - ' )  and 
((.Le) -' in ID) terms instead, with the Nyquist mechanism not operating at all. The 

T 2  coefficient should still match as before; this is not evident, with a value of 2.0 X 10" 
s-' being obtained in this case. Hence the most likely explanation is that L,(T)  is 
determined by the ID Nyquist mechanism with a contribution from the 2D Landau-Baber 
term. 

For Vg = 60 V, Vp = -3 V, L,  and L,aregreaterthan Wover theentire temperature 
range. The best power law fit, as shown in figure 3, is given by L, = (0.34 i 0.01) pm 
( T/K)-0.36'0.03 which compares favourably with the ID Nyquist prediction of 0.41 pm 
( T / K )  - ' I3. 

For Vg = 75 V, Vp = -6 V, the temperature dependence drops (figure 3) below 
T-'I3 at a higher temperature than noted in the previous results. It is possible that the 
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phase-breaking mechanism is becoming dominated by the large energy-transfer mech- 
anism t& ( L ,  = T-1/4 in ID). Indeed, the values of the parameter kTz, / f i  at T = 145 mK 
are 1.75, 1.07 and 0.77 respectively for the three sets of bias conditions considered, 
indicating the Nyquist mechanism need not dominate tie at the lowest temperatures. 
However, we note that additional structure in the magnetoresistance traces for 
T < 150 mK makes the analysis less reliable in this region [ 161. 

In conclusion, we have examined the temperature dependence of the phase breaking 
mechanism in the quasi-ir, regime by analysing the weak localisation negative mag- 
netoresistance. In the most interesting case L, is best described by a combination of 
the ID Nyquist mechanism with a contribution from the ZD Landau-Baber term. In a 
narrower channel the data is well described by the ID Nyquist mechanism. 

This work was supported by the Science and Engineering Research Council and, in 
part, by the European Research Office of the US Army. We thank the Edinburgh 
Microfabrication Facility staff for their assistance in the preparation of samples. D 
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